If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2-30x-80=0
a = 20; b = -30; c = -80;
Δ = b2-4ac
Δ = -302-4·20·(-80)
Δ = 7300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7300}=\sqrt{100*73}=\sqrt{100}*\sqrt{73}=10\sqrt{73}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-10\sqrt{73}}{2*20}=\frac{30-10\sqrt{73}}{40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+10\sqrt{73}}{2*20}=\frac{30+10\sqrt{73}}{40} $
| 4/3(5u+6)-u=7/4(8u-4)+20/3 | | 3(2x+5)=9+3x | | -6(1-3x)=-132 | | 2z+15=-5 | | 20+9.75x=78.50 | | 2(x-8)-1=7 | | 8(x+3)-2=3x+5(5+x) | | 9x+1=x+3x+5x | | 61=2+7y | | 22x=15x-5 | | 6u-10=-6u+2(6u-5) | | 6x-11=16=9x | | 0.6666(6x-15)=18 | | 56=17p=-29 | | 180=g9/12 | | −13+2z=−5/6 | | 1890=g9/12 | | 10w+19=-10w+5(4w-5) | | x3=12 | | 5x-x+5=2(2x+3) | | r–11=-7 | | 4-x=x+26 | | 2+6(5p-4)=11(p-2 | | 3x+2=-2-38 | | -5/6-2/3=x | | 5x-38=2x | | 6(-4x+4)=-16x-32 | | 525b-40=3,780 | | 9–10d=-9d+1 | | 7z–-6z=13 | | k-4/10=3/4 | | 5n-10=(-4n)+8 |